Analysis of PVB Applications with Different Viscosities and Structural Specifications (Part 2)
Feb 11, 2026
In the fields of electronic materials, metal foil processing, and high-reliability adhesives, higher requirements are placed on the heat resistance, bonding strength, and long-term stability of resin materials. Polyvinyl butyral resin, due to its good flexibility, polar functional group structure, and excellent film-forming ability, has become an important component of various functional adhesives and electronic-grade coatings. In addition to the traditional HX and SY series, the CCP series of PVB has developed high-performance modified PVB products, represented by the TX series, specifically for high-temperature applications and metal-to-metal interface bonding needs.
1. Specification Classification and Structural Characteristics of TX Series PVB
Unlike conventional PVB, the TX series products are high-thermal-stability, high-viscosity modified PVBs. While maintaining the acetal backbone, their molecular structure significantly improves heat resistance and bonding reliability through functional group ratios and molecular weight design.
From a viscosity grade perspective, the TX series can be divided into two main categories:
One category is medium-to-low viscosity modified PVB, represented by PVB B-03TX, mainly used in applications requiring high application flowability and coating uniformity. These products, while maintaining basic adhesion, help reduce system viscosity, making them suitable for precision coating or thin-film applications.
Another type is high-viscosity and ultra-high-viscosity modified PVB, including specifications such as PVB Resin B-10TX, Changchun PVB B-11TX, PVB B-12TX, PVB B-17TX, CCP PVB B-20TX, and PVB B-24TX. These products have higher molecular weights and denser film-forming structures, maintaining stable mechanical properties and interfacial adhesion even at high temperatures, making them a core resin choice for electronic-grade and structural adhesives.
2. Analysis of High Thermal Stability and Metal Interfacial Adhesion Performance
One of the outstanding advantages of the TX series PVB is its excellent heat resistance. In electronic manufacturing and metal processing, adhesives and coating materials often undergo multiple heat treatment processes, such as baking, reflow soldering, or long-term high-temperature service environments. Ordinary resins are prone to softening, migration, or adhesion attenuation under these conditions, while the TX series PVB, through molecular structure optimization, effectively improves the glass transition temperature and thermal stability range.
Furthermore, the TX series products exhibit particularly outstanding performance in metal interfacial adhesion. The hydroxyl functional groups retained in its molecules can form stable physical or chemical interactions with metal surfaces, improving adhesion to metal materials such as copper and aluminum foil. This property makes it widely used in printed circuit board (PCB) copper foil adhesives, metal composite films, and functional coatings.
In practical formulations, high-viscosity TX series PVBs can significantly improve the cohesive strength and fatigue resistance of the adhesive layer, contributing to improved reliability and lifespan of the final product.
3. Typical Applications
In the field of electronic-grade adhesives, high-viscosity grades such as PVB B-10TX to PVB B-24TX are widely used as bonding layers between PCB copper foil and substrates. These applications not only require high initial tack but also emphasize stability under high temperature, high humidity, and long-term operating conditions. The application of TX series PVBs in this field can effectively reduce the risk of interface failure.
In metal foil composites, TX series PVBs combine good flexibility and bonding strength, adapting to the thermal expansion differences between the metal and polymer substrates, reducing delamination problems caused by thermal cycling.
For systems requiring a balance between workability and performance, different viscosity grades of the TX series can be mixed. Due to the good compatibility between various CCP PVB specifications, formulation engineers can achieve precise control over viscosity, flowability, and final properties by adjusting the proportions.
High-viscosity TX series products have relatively high requirements for solvent selection and process conditions during dissolution and dispersion. Proper control of dissolution temperature, stirring intensity, and solid content helps to fully realize their performance advantages.
Website: www.elephchem.com
Whatsapp: (+)86 13851435272
E-mail: admin@elephchem.com
BACA SELENGKAPNYA