Resin 4-tert-Butilfenol formaldehida

Rumah

Resin 4-tert-Butilfenol formaldehida

  • Aplikasi Resin Fenolik dan Kompositnya
    Sep 05, 2025
    Resin fenolik yang dimodifikasi mengatasi kekurangan resin fenolik, seperti ketahanan panas yang buruk dan kekuatan mekanik yang rendah. Mereka menawarkan sifat mekanik yang sangat baik, ketahanan panas yang kuat, ikatan yang kuat, dan stabilitas kimia. Mereka banyak digunakan dalam aplikasi pencetakan kompresi bubuk, pelapis, lem, serat, anti-korosi, dan insulasi termal. 1. Aplikasi Resin Fenolik Termodifikasi dalam Bubuk Cetak KompresiSerbuk cetak kompresi sangat penting untuk produksi produk cetakan. Serbuk ini terutama terbuat dari resin fenolik yang dimodifikasi. Dalam proses manufaktur, metode yang umum digunakan adalah pemadatan rol dan ekstrusi sekrup ganda. Kayu digunakan sebagai pengisi untuk menghamili resin, kemudian reagen lain ditambahkan dan diaduk rata. Serbuk tersebut kemudian dihaluskan untuk menghasilkan serbuk cetak kompresi. Material seperti kuarsa dapat ditambahkan untuk menghasilkan serbuk cetak kompresi dengan insulasi dan ketahanan panas yang lebih baik. Serbuk cetak kompresi merupakan bahan baku untuk berbagai produk plastik, yang dapat diproduksi secara industri melalui pencetakan injeksi atau pencetakan kompresi. Gambar 2 menunjukkan aplikasi resin fenolik yang dimodifikasi dalam serbuk cetak kompresi. Serbuk cetak kompresi terutama digunakan pada komponen listrik seperti sakelar dan steker untuk peralatan rumah tangga. 2. Aplikasi Resin Fenolik Termodifikasi dalam PelapisSelama 70 tahun, pelapis telah menggunakan resin fenolik. Resin fenolik yang dimodifikasi rosin atau Resin 4-tert-Butilfenol formaldehida adalah yang utama dalam pelapis fenolik. Resin ini membuat pelapis lebih tahan terhadap asam dan panas, sehingga umum digunakan dalam banyak proyek teknik. Namun, karena memberi warna kuning pada benda, Anda tidak dapat menggunakannya jika menginginkan hasil akhir berwarna terang. Selain dicampur dengan minyak tung, resin ini juga dapat dicampur dengan resin lain. Untuk meningkatkan ketahanan alkali dan kekerasan kering udara pelapis, resin alkid dapat ditambahkan untuk meningkatkan ketahanan alkali dan kekerasan pelapis. Untuk pelapis yang membutuhkan ketahanan asam dan alkali serta daya rekat yang baik, resin epoksi dapat ditambahkan untuk meningkatkan kinerja pelapis. Gambar 3 mengilustrasikan aplikasi resin fenolik yang dimodifikasi dalam pelapis. 3. Aplikasi Resin Fenolik Termodifikasi dalam Perekat FenolikPerekat fenolik sebagian besar terbuat dari resin fenolik termoseting yang dimodifikasi. Jika resin fenolik digunakan untuk membuat perekat, viskositasnya dapat menjadi masalah, sehingga hanya dapat digunakan untuk merekatkan kayu lapis. Namun, memodifikasi resin fenolik dengan polimer dapat meningkatkan ketahanan panas dan daya rekatnya. Perekat fenolik-nitril bahkan dapat memiliki kekuatan mekanis dan ketangguhan yang baik, terutama dalam hal ketahanan benturan. 4. Aplikasi Resin Fenolik Termodifikasi pada SeratResin fenolik juga memiliki beragam aplikasi dalam industri serat. Resin fenolik dilelehkan dan dibentuk menjadi serat, yang kemudian diolah dengan polioksimetilen. Setelah beberapa waktu, filamen akan memadat, menghasilkan serat dengan struktur padat. Untuk lebih meningkatkan kekuatan dan modulus serat, resin fenolik yang dimodifikasi dapat dicampur dengan poliamida cair konsentrasi rendah dan dibentuk menjadi serat, seperti yang ditunjukkan pada Gambar 4. Serat yang dipintal biasanya berwarna kuning dan memiliki kekuatan tinggi. Serat ini tidak akan meleleh atau terbakar bahkan pada suhu 8.000°C. Serat ini juga akan padam sendiri di lingkungan yang keras ini, mencegah terjadinya kebakaran di sumbernya. Pada suhu ruangan, serat resin fenolik yang dimodifikasi poliamida sangat tahan terhadap asam klorida dan asam fluorida pekat, tetapi kurang tahan terhadap asam dan basa kuat seperti asam sulfat dan asam nitrat. Produk-produk ini terutama digunakan dalam pakaian pelindung pabrik dan dekorasi interior, meminimalkan cedera dan kematian karyawan jika terjadi kebakaran. Mereka juga umum digunakan sebagai bahan insulasi dan isolasi termal dalam proyek teknik. 5. Aplikasi Resin Fenolik Termodifikasi pada Material Anti KorosiResin fenolik digunakan untuk membuat bahan anti-korosi, tetapi versi modifikasinya lebih umum. Anda sering melihatnya sebagai mastik resin fenolik, fiberglass komposit fenolik-epoksi, atau pelapis fenolik-epoksi. Contoh yang baik adalah pelapis fenolik-epoksi, yang menggabungkan ketahanan asam resin fenolik dengan ketahanan alkali dan daya rekat resin epoksi. Campuran ini menjadikannya sangat baik untuk melindungi pipa dan kendaraan dari korosi. 6. Aplikasi Resin Fenolik Termodifikasi pada Bahan Isolasi TermalKarena resin fenolik termodifikasi menawarkan ketahanan panas yang lebih unggul dibandingkan resin fenolik murni, busa resin fenolik termodifikasi menempati posisi terdepan di pasar insulasi termal, seperti yang ditunjukkan pada Gambar 5. Busa resin fenolik termodifikasi juga menawarkan insulasi termal, ringan, dan sulit terbakar secara spontan. Selain itu, ketika terkena api, busa ini tidak menetes, sehingga efektif mencegah penyebaran api. Oleh karena itu, busa ini banyak digunakan dalam lembaran baja berlapis warna insulasi termal, insulasi ruangan, AC sentral, dan pipa yang membutuhkan suhu rendah. Saat ini, busa polistirena merupakan material insulasi yang paling banyak digunakan di pasaran, tetapi kinerjanya jauh lebih rendah daripada busa resin fenolik termodifikasi. Berkat konduktivitas termalnya yang rendah dan insulasi termal yang sangat baik, busa resin fenolik termodifikasi telah menjadikannya sebagai "Raja Insulasi" dalam industri insulasi. Situs web: www.elephchem.comWhatsApp: (+)86 13851435272Surel: admin@elephchem.com
    BACA SELENGKAPNYA
  • Penelitian tentang Material Komposit Resin Fenolik yang Dimodifikasi
    Aug 29, 2025
    1. Pengantar Resin Fenolik Resin formaldehida fenoik Resin fenolik terutama terbentuk melalui polikondensasi fenol dan formaldehida. Resin fenolik pertama kali diciptakan secara tidak sengaja oleh ilmuwan Jerman, Bayer, pada tahun 1780-an. Ia mencampur fenol dan formaldehida, lalu mengolahnya untuk menghasilkan produk cair. Namun, Bayer tidak meneliti atau membahas produk ini lebih lanjut. Baru pada abad ke-19, Bloomer, yang melanjutkan karya kimiawan Jerman, Bayer, berhasil memproduksi resin fenolik menggunakan asam tartarat sebagai katalis. Namun, karena operasi yang rumit dan biaya yang tinggi, industrialisasi tidak tercapai. Baru pada tahun 1820-an, ilmuwan Amerika Buckland menandai dimulainya era resin fenolik. Ia menemukan produk kimia ini dan, melalui penelitian dan diskusi sistematis, akhirnya mengusulkan metode pengawetan "tekanan dan panas" untuk resin fenolik. Hal ini meletakkan dasar bagi pengembangan resin fenolik di masa depan, dan perkembangan pesat jenis resin ini selanjutnya. 2. Penelitian tentang Resin Fenolik yang DimodifikasiNamun, seiring kemajuan teknologi, para ilmuwan telah menemukan bahwa resin fenolik tradisional semakin tidak mampu memenuhi kebutuhan industri yang sedang berkembang. Oleh karena itu, konsep resin fenolik termodifikasi telah diusulkan. Hal ini melibatkan penggunaan resin fenolik sebagai matriks dan penambahan fase penguat untuk meningkatkan kinerja resin fenolik melalui sifat-sifat fase penguat. Meskipun resin fenolik tradisional memiliki ketahanan panas dan oksidasi yang luar biasa karena adanya gugus kaku seperti cincin benzena ke dalam matriks, resin ini juga memiliki banyak kekurangan. Selama proses preparasi, gugus hidroksil fenolik mudah teroksidasi dan tidak berpartisipasi dalam reaksi, sehingga menghasilkan konsentrasi gugus hidroksil fenolik yang tinggi dalam produk akhir, yang menyebabkan pengotor. Lebih lanjut, gugus hidroksil fenolik sangat polar dan mudah menarik air, yang dapat menyebabkan kekuatan rendah dan konduktivitas listrik yang buruk pada produk resin fenolik. Paparan sinar matahari yang terlalu lama juga dapat mengubah resin fenolik secara signifikan, menyebabkan perubahan warna dan peningkatan kerapuhan. Kelemahan-kelemahan ini secara signifikan membatasi penerapan resin fenolik, sehingga modifikasi resin fenolik penting untuk mengatasi kekurangan tersebut. Saat ini, jenis utama resin fenolik termodifikasi meliputi resin polivinil asetal, resin fenolik termodifikasi epoksi, dan resin fenolik termodifikasi silikon. 2.1 Resin Polivinil AsetalResin polivinil asetal saat ini dimodifikasi dengan menambahkan komponen lain. Prinsipnya adalah dengan mengembunkan polivinil alkohol (PVA) dan aldehida dalam kondisi asam membentuk polivinil asetal. Hal ini terutama karena polivinil alkohol larut dalam air dan kondensasi aldehida mencegahnya larut dalam air. Aldehida ini kemudian dicampur dengan resin fenolik dalam kondisi tertentu, yang memungkinkan gugus hidroksil dalam resin fenolik bergabung dengan gugus hidroksil dalam polivinil asetal, mengalami polikondensasi dan menghilangkan satu molekul air untuk membentuk kopolimer cangkok. Karena adanya gugus fleksibel, penambahan polivinil asetal meningkatkan ketangguhan resin fenolik dan mengurangi kecepatan pengerasannya, sehingga mengurangi tekanan cetak produk polivinil asetal. Namun, satu-satunya kekurangannya adalah berkurangnya ketahanan panas produk polivinil asetal. Oleh karena itu, resin fenolik yang dimodifikasi ini sering digunakan dalam aplikasi seperti cetak injeksi. 2.2 Resin fenolik yang dimodifikasi epoksiResin fenolik termodifikasi epoksi biasanya dibuat menggunakan resin epoksi bisfenol A sebagai fase penguat dan resin fenolik sebagai matriks. Reaksi ini terutama melibatkan reaksi eterifikasi antara gugus hidroksil fenolik dalam resin fenolik dan gugus hidroksil dalam resin epoksi bisfenol A, yang menghasilkan ikatan gugus hidroksil dalam resin fenolik dan gugus hidroksil dalam resin epoksi bisfenol A, yang melepaskan satu molekul air dan membentuk ikatan eter. Selanjutnya, gugus hidroksimetil dalam resin fenolik dan gugus epoksi terminal dalam resin epoksi bisfenol A mengalami reaksi pembukaan cincin, membentuk struktur tiga dimensi. Dengan kata lain, aksi pengerasan resin epoksi bisfenol A dirangsang oleh resin fenolik, yang menghasilkan perubahan struktural lebih lanjut. Karena strukturnya yang kompleks, resin termodifikasi ini menunjukkan daya rekat dan ketangguhan yang sangat baik. Lebih lanjut, produk yang dimodifikasi ini juga memiliki ketahanan panas yang sama dengan resin epoksi bisfenol A, yang berarti kedua material ini dapat dianggap saling melengkapi dan meningkatkan. Oleh karena itu, material ini terutama digunakan dalam pencetakan, perekat, pelapis, dan bidang lainnya. 2.3 Resin Fenolik yang Dimodifikasi SilikonResin fenolik yang dimodifikasi silikon menggunakan silikon sebagai fase penguat. Berkat adanya ikatan silikon-oksigen dalam silikon, silikon memiliki ketahanan panas yang sangat baik, jauh lebih tinggi daripada bahan polimer pada umumnya. Namun, silikon memiliki daya rekat yang relatif rendah. Oleh karena itu, silikon dapat ditambahkan untuk meningkatkan ketahanan panas resin fenolik. Prinsipnya adalah monomer silikon bereaksi dengan gugus hidroksil fenolik dalam resin fenolik untuk membentuk struktur ikatan silang. Struktur ikatan silang yang unik ini menghasilkan material komposit termodifikasi dengan ketahanan panas dan ketangguhan yang sangat baik. Pengujian menunjukkan bahwa material ini tahan terhadap panas tinggi dalam waktu lama. Itulah sebabnya material ini sering digunakan dalam roket dan rudal yang harus tahan terhadap suhu ekstrem. Resin fenolik biasanya dimodifikasi menggunakan metode-metode di atas. Anda dapat membuat resin modifikasi seperti resin modifikasi epoksi, modifikasi silikon, dan polivinil asetal dengan memulai dengan resin fenolik. Cara lain adalah dengan mengubah aldehida atau fenol menjadi senyawa lain, lalu mereaksikannya dengan fenol atau aldehida untuk menghasilkan resin modifikasi seperti resin novolak fenolik dan resin fenolik yang dimodifikasi xilena. Sebagai alternatif, reaksi tanpa fenol dapat menghasilkan resin fenolik tahap pertama, yang kemudian bereaksi menghasilkan resin fenolik tahap kedua, seperti resin difenil eter formaldehida. Situs web: www.elephchem.comWhatsApp: (+)86 13851435272Surel: admin@elephchem.com
    BACA SELENGKAPNYA
  • Pengaruh sifat fisikokimia resin fenolik terhadap perilaku pembusaannya
    Aug 07, 2025
    Busa karbon, material karbon fungsional dengan struktur sarang lebah, tidak hanya menawarkan sifat-sifat unggul seperti kepadatan rendah, kekuatan tinggi, ketahanan oksidasi, dan konduktivitas termal yang dapat disesuaikan, tetapi juga memiliki kemampuan proses yang sangat baik. Oleh karena itu, busa karbon dapat digunakan sebagai konduktor termal, isolator, pembawa katalis, biosolidifier, dan penyerap. Busa karbon memiliki prospek aplikasi yang luas dalam aplikasi militer, insulasi bangunan hemat energi, katalisis kimia, pengolahan air limbah biologis, dan energi. Busa karbon dapat dibagi menjadi dua jenis—satu yang memungkinkan panas melewatinya dengan mudah (konduktif termal) dan yang lainnya yang mencegah panas melewatinya (isolasi termal). Perbedaannya terletak pada seberapa banyak material karbon asli telah diubah menjadi grafit. Pitch mesofase dan resin fenolik Terdapat dua prekursor karbon yang umum digunakan untuk menghasilkan busa karbon dengan konduktivitas termal tinggi dan rendah. Saat ini, resin fenolik termoseting dan termoplastik merupakan prekursor karbon berkualitas tinggi untuk menghasilkan busa karbon dengan konduktivitas termal rendah. Dengan menggunakan resin fenolik sebagai bahan baku, busa resin fenolik dapat diproduksi dengan menambahkan bahan peniup dan bahan pengawet, lalu dibusakan pada tekanan normal. Busa karbon kemudian diproduksi melalui karbonisasi suhu tinggi. Kekuatan tekan busa karbon ini di bawah 0,5 MPa, yang membatasi penggunaannya. Kapan Resin Fenolik 2402 digunakan sebagai bahan baku, pori-pori busa karbon yang dihasilkan pada berbagai tekanan pembusaan hampir berbentuk bulat (Gambar 6). Karena tidak ada agen pembusa yang ditambahkan, proses pembusaan mengikuti mekanisme pembusaan sendiri, di mana material matriks mengalami reaksi perengkahan pada suhu tertentu, menghasilkan gas-gas molekul kecil yang sesuai. Saat gas terbentuk, gas-gas tersebut berkumpul dan tumbuh menjadi pori-pori. Viskositas, struktur, volume, bentuk, dan laju produksi gas dari material dasar berubah seiring dengan produksi gas perengkahan. Ini berarti struktur pori-pori dalam busa karbon bergantung pada viskositas material dasar, laju produksi gas, volume, seberapa cepat viskositasnya berubah, dan tekanan luar dalam rentang suhu pembusaan.Pada suhu berbusa antara 300 dan 425°C, resin fenolik 2402 menghasilkan banyak gas retak (Gambar 3(a)) dan memiliki viskositas rendah (
    BACA SELENGKAPNYA
Tinggalkan pesan

Rumah

Produk

ada apa

Hubungi kami